
 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 1 of 18

Reverse .NET Software IX
Unpack .Net Reactor 3.9.8.0

www.reaonline.net

1 Introduction ___ 2

2 Unpacking with old method___ 3

3 Unpack with new method ___ 8

4 Conclusion __ 17

5 The end__ 17

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 2 of 18

1 Introduction

• It has been a long time since I wrote my 8th article in “Reverse .Net Software”
serie. This serie was written in Vietnamese because at the beginning I did not

intend to publish it to internet community. It is just for members in REA
group. In this serie I would like to dicuss about the protection ways of .net

applications and their weaknesses but the .net protectors and obfuscators
changed their methods day by day, the present is not like the past anymore.

It gets harder to reverse a .net application than before so I decide to continue

my series with this article with hoping that it will helps the others to
understand more about .Net Framework and .Net Protectors.

• First, I would like to send a great thank to TQN. He helped me a lot by giving
me much important information that he got during his reversing work.

Without his help I can not finish this article, an article about “Unpacking .Net
Reactor 3.9.8.0”.

• “ .NET Reactor is a powerful .NET code protection & licensing system which
assists developers in protecting their .NET software. Developers are able to

protect their software in a safe and simple way now. This way developers can
focus more on development than on worrying how to protect their intellectual

property”.
• Many reversers around the world had tried to unpack this packer and most of

them had done their jobs successfully. The fact is that .Net Reactor is anyway
not the powerful packer for .Net. He wrapped the original assembly and

unpacked it again in memory. This method will lead, of course, to a security

hole that a reverser can easily dump assembly from memory and get it back.
• The developers of .Net Reactor know about this hole but they can not prevent

a reverser from dumping so they tried to modify the memory so that after
dumping the memory to file the reverser can not easily start their reverse

process because the format of file is now destroyed. A visible result of this
anti-dump technique is that the dumped file can not be viewed with .Net

Reflector. Therefore after dumping, the reverser must always fix their dump
so that the file is exactly constructed again. This terrible job can be executed

manually (which causes 100% a nightmare with calculation) or automatically
through a tool (for example I wrote a tool .Net Reactor Unpacker to do

something like that).
• I also used this method for 2 years to unpack many packers (for example

Themida .Net, Cli Secure…) but I really do not like it. It is just so common, it
does not tell me at least how the packer works. I just dump the assembly

from memory and try to fix the header information to get the original back. It

is the work of a PE fixer. However thank to this job now I have a good
knowledge about .Net Pe File and write myself a library to parse a .net

assembly and use this library in my tools (for example .Net Id). So I would
like to introduce in this article a method to unpack .Net Reactor without fixing

anything after dumping. That means I will dig deeper to find out how .Net
Reactor work and dump the original assembly back which does not need any

fixing after that. The version of .Net Reactor which I used is 3.9.8.0 which was

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 3 of 18

released on 12-Nov-2008. This new method is only academic. It will help us to

understand more about how .Net Reactor works, but it can not be applied to
unpack an application packed by .Net Reactor because it is time-consuming.

2 Unpacking with old method

• Before introducing new method I would like to use the current one which is

used around the world (as I know) to unpack .Net Reactor. The target is my
typical SampleCrackme which is packed with a demo version of .Net Reactor.

You can find it as attachments of this article. I use OllyIce as my debugger.

And let’s start.
• Open OllyIce, load the target until it runs. Press Alt – M to open Memory

Window, right click at the top of window, choose Search and enter the pattern
to find Assembly in memory. The pattern can be the Window’s name, caption

of lable, caption of button or “Assembly Version” (as suggested by
CodeRipper) or something like that.

• The search engine will pause at here

• Scroll up to the beginning of memory section we’ll see the MZ-Word. MZ is for
MaZic Word? Oh no, it is the initial of Mark Zbikowski, one of the developers

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 4 of 18

of MS-DOS. It indicates that this memory section contains a PE (Portable

Executable) file.

• If there is a MZ Word at memory section then scroll down slowly through the
memory section to see if this section may be the assembly which we want. If

not then search next. How do we know that this memory section is what we
need? Then use our feeling, the wanted section will contain strings which are

related to the assembly, for example name of assembly, caption of windows,
name of company which writes the application…. The size of section can say

something too. With this target, the section which we found above is the right
one. Let’s dump it to file. I save it under the name _012E0000.exe.

• OllyIce finishes his job, turn him off. Open Reflector and load our dump file.

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 5 of 18

• We know that .Net Reactor destroyed the header of assembly. Such errors are
what we are looking for. This is evidence telling us that .Net Reflector has

destroyed the metadata so that we can not decompile file anymore after
dumping. The .Net Reflector tells us that there is an error at RVA of a

metadata element. Use CFF Explorer to open the dump file, go through and
we found something wrong with MetaData RVA. It can not be 0x00000000.

• Let’s fix it. In CFF Explorer, go to Address Converter, search string “BSJB”, we
found it at offset 0x9400, enter this value in textbox offset we’ll get its RVA is

0XA400. Copy this value and paste it to MetaData RVA. This magic number
“BSJB” refers to some of the original developers of the .NET Framework, Brain

Harry, Susan Radke-Sproull, Jason Zander and Bill Evans. It seems that
Microsoft like to honor their developers by adding their names to the file

format. This magic string points to the first entry in the metadata table.
• Two figure below show result of searching and modify the MetaData RVA.

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 6 of 18

• Save our modifications and overwrite the original file. Use .Net Reflector to

open it and now we got .Net Reflector to work. Reflector can now decompile
the assembly. How easy it is! However how does .Net Reactor really work?

When did he unpack the assembly to memory? When did he destroy the
Metadata header? We’ll find out in next section.

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 7 of 18

• The assembly can be view with Reflector. No error with Metadata anymore.

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 8 of 18

3 Unpack with new method

• To find out more about how .Net Reactor works, we need to debug the .Net
Framework, set breakpoint at some important functions and see what

happened. To do that we need to make our OllyIce to be able to load with
symbol file of .Net Framework which provides much useful information about

the functions of a file? The symbol file may be achieved in many ways but I
know only one way through WinDbg. If you know more, then please share

your way with me.
• So go to download WinDbg, install it. Open command console, browse to the

folder where we installed WinDbg. For example I install it under the folder

Programme\Debugging Tools for Windows (x86)

• Enter this command symchk /v

"C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\mscorwks.dll". It will
load the symbol file of mscorwks.dll from Microsoft server. The link to your

mscorwks.dll at local computer may vary with mine. So please be sure that
you provide the correct link to symchk. If not, symchk can not load the

symbol file to our local computer. After execution of symchk, it will give the
result back. In my result, symchk did his job successfully. No failed file and

one passed/ignored file because I downloaded the symbol for mscorwks
before. Symchk just check to find out if there are any updates for this file, he

found no update so he just passed.
• Mscorwks.dll and Mscorjit.dll are two significant DLLs of .net framework. When

a assembly is loaded, mscorwks.dll will validate its PE Header, IL format,

verify strong name,… So we will load its symbol to provide more info to
OllyIce so that we can make our debug better.

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 9 of 18

• We have now the symbol file of mscowks; in next step we must configure our

Olly so that he can work with this symbol file. A command plugin for OllyDbg

of anonymouse can do this job perfectly.
• Before using this plugin we need to configure it. Let’s add an environment

variable _NT_SYMBOL_PATH with the value C:\Windows\Symbols. The value
of this environment variable is the path to where symchk saved the symbol

file at local computer. This value stands in the result of symchk command

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 10 of 18

after execution too. For example, we can find it in the figure above at some

first rows.

• With this help of this plugin, OllyIce can now work with the symbol file. Open

OllyIce, go to Debugging Options, be sure that “Make first pause at: System

breakpoint” and “Break on new module (DLL)” and all exceptions must be
passed

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 11 of 18

• Load the SampleCrackme into OllyIce, it will land at this command

• Open Command line plugin, enter this command loadpdb
C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\mscorwks.dll. This

command will load the symbol file into OllyIce and we’ll have more
information when debugging mscorwks.dll.

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 12 of 18

• Press F9 so that OllyIce starts to run SampleCrackme. Everytime when a

module loads, OllyIce will stop. Just press F9 until mscorwks is loaded.

• Right click on the record of mscorwks, click View names.

• It is very beautiful. We have the names of all functions. They are very
meaningful. It’ll surely help us a lot in reversing .Net application. After going

through this list, let’s set breakpoint on the function
AssemblyNative:LoadImage. It looks so interesting and may bring us much

useful information.
• Press F9 so that OllyIce continues his job until we break at

AssemblyNative:LoadImage, right click on ECX register, follow in dump and
we see

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 13 of 18

• A great jump, ECX pointed to an unknown struct. This struct contains an
unknown pointer (DWORD), the size of assembly and the complete assembly.

We can now easily dump assembly from memory with the exact size (no
redundant bytes anymore) and the dumped file can be an original one with

the probability up to 90%. However it is not easy to find out when we can get
the assembly that we need. As you know, when an assembly is loaded, the

.Net framework will load it references so when this breakpoint stops OllyIce, it

does not mean that ECX points to the assembly which we want but it can be
its references, the loader or something like that. So we must to be sure that

ECX points to our wanted assembly.
• In this example, I packed my Sample Crackme with a demo version of .Net

Reactor. Hence a nag reminding me to buy a full version comes always up
before my Sample Crackme runs. So I take this nag as a signal telling me that

the breakpoint which breaks after this nag will point to my assembly. Or like
AS Protect, you can count the number of times that this breakpoint breaks

and the last break before the assembly completely runs will lead us to the
memory section of the assembly.

• After this nag is loaded, OllyIce will break at the breakpoint

AssemblyNative:LoadImage again. We have now ECX point to our assembly

with size of 0xF000 as shown in figure below.

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 14 of 18

• Let’s dump this memory to file; I use LordPE to do that. At my local computer

the address is 0x14B2F8C and size is of course 0xF000.

• Let’s view the dumped file in Reflector. Oh, we have a correct header.

Everything looks beautiful, no crashes, no need to fix any value in header file

but where is our IL code? Did .Net Reactor hide it anywhere? Is there any IL
Code in file or are they all changed to native code?

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 15 of 18

• Return to OllyIce windows, browse to the section of IL Code which starts
normally at offset 0x1050. We see that the Method Header of each method is

destroyed through replacing 4 bytes at the beginning with 0xBDAC0000. You
can read more about Method Header (Fat Header/Tiny Header) in the

documentation of Microsoft about .Net PE File Format.

• .Net Reactor must anywhere restore these bytes back so that CLR can compile

the code. A breakpoint at WriteProcessMemory should be a good candidate to
find out where .Net Reactor tries to write the original value back.

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 16 of 18

• Press F9 so that OllyIce runs forward and we will land here.

• Scroll up to 0x12F0000 we see a magic word MZ, scroll down to take a look at
whole memory section we see that it may be contain the assembly which we

want.

• The offset 0x1000 starts usually the MetaData Header of .Net Directory. With

the WriteProcessMemory function, .Net Reactor try to write garbage value into

this MetaData Header and restore the Method Header of each method back.

To stop him to do what he wants, everytime when he tries to modify value
from offset 0x1000 to 0x1050 (a usual range for MetaData Header of .net

application) , we modify the BytesToWrite to 0 so that he can not write any
value to destroy the header and with that way we only allow him to restore

the method header back.
• .Net Reactor will modify the MetaData Header first and he’ll restore the

method header back and at last he will modify the MetaData Header again. So
to get our original assembly back, at the first round when he modifies our

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 17 of 18

MetaData Header, we modify the BytesToWrite to 0. In the second round

when he starts to restore our method header back, we just press F9 to go
through. In the last round, when he wants to modify our metadata header

again, we have already let him fix all Method Header. We just dump the
original assembly back and we’ll get full working file which can be viewed in

Reflector.

4 Conclusion

• We have tried to unpack .Net Reactor with old method and new method. You

can realize that the new one is just for studying how .Net Reactor works
actually. It can not be applied in reality because for example unpacking a file

with more than thousands of method, we can not sit and press F9 until the
third round (WriteProcessMemory tries to write at offset 0x1000 to 0x1050

again).
• However the new method provides us a deeper look about .Net Framework

and the way .Net Reactor works. There are a lot of interesting functions of
mscorwks.dll which we can set a breakpoint and see what happens. I am

looking forward to see other articles showing the art of playing with
mscorwks.dll and mscorjit.dll file.

5 Links in article

• REA http://reaonline.net/index.php

• .Net Reactor http://www.eziriz.com/
• .Net Reflector http://www.red-gate.com/products/reflector/

• .Net Reactor Unpacker http://rongchaua.net/tools-mainmenu-36/80-reacfixer

• .Net PE Library http://rongchaua.net/tools-mainmenu-36/117-net-pe-file-
format-library

• .Net Id http://rongchaua.net/tools-mainmenu-36/131-net-id
• Command Line Plugin of anynomouse

http://www.openrce.org/downloads/details/206/Modified_CmdLine_Plug-in
• .Net PE File Format

http://download.microsoft.com/download/7/3/3/733AD403-90B2-4064-A81E-
01035A7FE13C/MS%20Partition%20II.pdf

6 References

• http://portal.acm.org/citation.cfm?id=579355

7 The end

• I wrote this documentation just for storing my thinking flow during reverse

process. It is just a notice and I do not intend to write it as an article.
Therefore in some section I just discuss main idea and of course it is not

completely explained. I hope you can emphatize with me.
• I do write something wrong please contact to correct me.
• This artice was written as a reference for member in REA so I would like to

present REA members with this one.

 Reverse .NET Software IX 1.0.0.0 Rongchaua

Page 18 of 18

• This artice is aimed for education. I am not responsible for the reader’s

activity when the reader use it for their aims.

Rongchaua
My Email : rongchaua@rongchaua.net

My Website: www.rongchaua.net
If I make a mistake in this article, please correct me.

12.04.2009-13.04.2009

