Reverse .NET Software 1X 1.0.0.0

Rongchaua

Reverse .NET Software IX
Unpack .Net Reactor 3.9.8.0

www.reaonline.net

Introduction

Unpacking with old method

Unpack with new method

Conclusion

17

N A WN KN

The end

17

Page 1 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

1 Introduction

It has been a long time since I wrote my 8™ article in “Reverse .Net Software”
serie. This serie was written in Vietnamese because at the beginning I did not
intend to publish it to internet community. It is just for members in REA
group. In this serie I would like to dicuss about the protection ways of .net
applications and their weaknesses but the .net protectors and obfuscators
changed their methods day by day, the present is not like the past anymore.
It gets harder to reverse a .net application than before so I decide to continue
my series with this article with hoping that it will helps the others to
understand more about .Net Framework and .Net Protectors.

First, I would like to send a great thank to TQN. He helped me a lot by giving
me much important information that he got during his reversing work.
Without his help I can not finish this article, an article about “Unpacking .Net
Reactor 3.9.8.0".

" .NET Reactor is a powerful .NET code protection & licensing system which
assists developers in protecting their .NET software. Developers are able to
protect their software in a safe and simple way now. This way developers can
focus more on development than on worrying how to protect their intellectual
property”.

Many reversers around the world had tried to unpack this packer and most of
them had done their jobs successfully. The fact is that .Net Reactor is anyway
not the powerful packer for .Net. He wrapped the original assembly and
unpacked it again in memory. This method will lead, of course, to a security
hole that a reverser can easily dump assembly from memory and get it back.
The developers of .Net Reactor know about this hole but they can not prevent
a reverser from dumping so they tried to modify the memory so that after
dumping the memory to file the reverser can not easily start their reverse
process because the format of file is now destroyed. A visible result of this
anti-dump technique is that the dumped file can not be viewed with .Net
Reflector. Therefore after dumping, the reverser must always fix their dump
so that the file is exactly constructed again. This terrible job can be executed
manually (which causes 100% a nightmare with calculation) or automatically
through a tool (for example I wrote a tool .Net Reactor Unpacker to do
something like that).

I also used this method for 2 years to unpack many packers (for example
Themida .Net, Cli Secure...) but I really do not like it. It is just so common, it
does not tell me at least how the packer works. I just dump the assembly
from memory and try to fix the header information to get the original back. It
is the work of a PE fixer. However thank to this job now I have a good
knowledge about .Net Pe File and write myself a library to parse a .net
assembly and use this library in my tools (for example .Net Id). So I would
like to introduce in this article a method to unpack .Net Reactor without fixing
anything after dumping. That means I will dig deeper to find out how .Net
Reactor work and dump the original assembly back which does not need any
fixing after that. The version of .Net Reactor which I used is 3.9.8.0 which was

Page 2 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

released on 12-Nov-2008. This new method is only academic. It will help us to
understand more about how .Net Reactor works, but it can not be applied to
unpack an application packed by .Net Reactor because it is time-consuming.

2 Unpacking with old method

Before introducing new method I would like to use the current one which is
used around the world (as I know) to unpack .Net Reactor. The target is my
typical SampleCrackme which is packed with a demo version of .Net Reactor.
You can find it as attachments of this article. I use Ollylce as my debugger.
And let’s start.

Open OllyIce, load the target until it runs. Press Alt - M to open Memory
Window, right click at the top of window, choose Search and enter the pattern
to find Assembly in memory. The pattern can be the Window’s name, caption
of lable, caption of button or "Assembly Version” (as suggested by
CodeRipper) or something like that.

Enter binary string to search for E

ssCl AN
UNICODE [
HEX +08 55 72 6D 4E 61 67
44
[v Eritire block J J
[Casze zensitive Ok, Cancel

The search engine will pause at here

2 Dump - 012E0000..012EEFFF

012EDCO] 66 72 . . 3 3 3 | frmHaqg.XiC3ah=s
012EQC]1T 6F 72 X 5! ! X orml. Settings. S
012EQC2% 6D 70 ? 6l 3 3 ! | mpleCrackme.Pr
012E2C37 65 72 . : . : 3 5! : 5 erties.X4cUCeT]

012E9C47 00 53 i ! ! . System. Windows
012E9C57 46 &F : : 3 |[Forms.Form. msc

01ZEDCSH] 6C 69 LK : . lib.System. Obj¢
012E9C7774 00 5] ! d t.System. Confid
012EQCET 72 61 : d ration. Applicat
012EQCDT 6F &6E 5! ! i d 5 |onSettingsBase
O12EDCAT 70 73 :

Scroll up to the beginning of memory section we’ll see the MZ-Word. MZ is for
MaZic Word? Oh no, it is the initial of Mark Zbikowski, one of the developers

Page 3 of 18

Reverse .NET Software 1X 1.0.0.0

Rongchaua

of MS-DOS. It indicates that this memory section contains a PE (Portable
Executable) file.

2 Dump - 012E0000..012EEFFF

012E000(¢ 4D !

012E001(ES
012E002(00
012E003(00
012E004(OE
012E005(60
012E006(74
[} (10} [}

o0
00
00
00
BA
20
a2
() A

If there is a MZ Word at memory section then scroll down slowly through the
memory section to see if this section may be the assembly which we want. If
not then search next. How do we know that this memory section is what we
need? Then use our feeling, the wanted section will contain strings which are
related to the assembly, for example name of assembly, caption of windows,
name of company which writes the application.... The size of section can say
something too. With this target, the section which we found above is the right

one. Let’s dump it to file. I save it under the name _012E0000.exe.

OllyIce finishes his job, turn him off

Bi=l

InitialMapped a:

o Backup » Create backup

o Copy » Load backup From File
o Binaty » Save daka o File

C: Breakpoink k

c Search far 3

G0 ko address Chrl+a _
Dump it to file

Hex

Texk
Short;
Long
Floak
Disassemble
Special

Appearance ».080318-1711

e e o o O T e R = R

[- o L) A

. Open Reflector and load our dump file.

Page 4 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

S 2YSTEM, WED

< System,Drawing

A3 Fyskem, Windows, Faorms
- Microsoft. VisualBasic
'} 012E0000

) Invalid RYA address ‘00000000,

1+ F

Can not load

We know that .Net Reactor destroyed the header of assembly. Such errors are
what we are looking for. This is evidence telling us that .Net Reflector has
destroyed the metadata so that we can not decompile file anymore after
dumping. The .Net Reflector tells us that there is an error at RVA of a
metadata element. Use CFF Explorer to open the dump file, go through and
we found something wrong with MetaData RVA. It can not be 0x00000000.

Member Offset Size Yalue Meaning |

ch Oo0o1005 Dwiord 0a0oE115
MajorRuntimeyersion Qo000 Word 3115
MinorRuntimeversian 0a00100E Ward 0ona
MetalData RMA oaoo1010 Cwword

Metalaka Size ooooiol4 Dword

Flags oooo101s [k

EntryPointTaken oooo101e D

Resources RVA Oo0o10z0 Cowar

Resources Size 00001024 Cwword 00007540
StrongMameSignature RYA oo0010zs Dwword 00003115
SkrongMameSignature Size 0000102 Cnward ooooo0aa

Let’s fix it. In CFF Explorer, go to Address Converter, search string "BSJB”, we
found it at offset 0x9400, enter this value in textbox offset we'll get its RVA is
0XA400. Copy this value and paste it to MetaData RVA. This magic number
“"BSIB” refers to some of the original developers of the .NET Framework, Brain
Harry, Susan Radke-Sproull, Jason Zander and Bill Evans. It seems that
Microsoft like to honor their developers by adding their names to the file
format. This magic string points to the first entry in the metadata table.

Two figure below show result of searching and modify the MetaData RVA.

Page5 of 18

Reverse .NET Software 1X 1.0.0.0 Rongchaua

WA oo40a400
Rhiay Qoo00&400
File Offset Q0009400

B B = o p =

Find
String | bsib | Fird

[Imatch Case []Unicode
| |

Skatus: String Found

Of f==t n1 2 3 4 5 & 7 8 9 A B CDEF Azcii

oooo9400 (B2 53 44 42 01 00 01 00 00 00 OO0 00 OC 0O 0O 00 BSJIEL. 1.
oooo941o | Y6 32 2E 30 2E 35 30 37 32 37 00 00 00 00 05 00 w2.0.507
oooo9420) &C 00 00 00 &8 0O 00 00 23 7E 00 00 D4 0% 00 OO0 1. hi...
oooo9430) C4 09 00 00 23 53 74 72 69 6E &7 73 00 00 00 OO0 & ¥Str
noooo9440) 95 11 00 00 &0 04 00 00 23 55 53 00 F&8 15 00 00 m..'1. .
oooo9450) 10 00 00 00 23 47 55 49 44 00 00 00 08 16 00 OO0 1. . #GOI
noooo94e0 | C8 02 00 00 23 42 6C 6F 62 00 00 00 00 00 0O OO0 El. #Blo

oooo9e4?o | 02 00 00 01 5% 15 A2 01 0% 01 00 OO0 o0 FA 01 33 [I 1)] |

Member Offset Size Yalue Meaning
ch 0aao1o0s Dwyiotd Q0003115
MajorR.untimeyer sion oo00100c Wiard 3115
MinarRuntimetersion oaaoiooE Word Qoo

Metalata RYA oaaoioio Dwiord Qo0oa400

Metalata Size ooooiol4 Dwyiord Qo0oaog0

Flags oooo101s Cwword 00000001 Click here
EntryPointTaken 0ooo101c Cword &E000005

Resources RYA 00001020 Dword Qoo0ZEea0

Resources Size 00001024 Crword Q0007540

« Save our modifications and overwrite the original file. Use .Net Reflector to
open it and now we got .Net Reflector to work. Reflector can now decompile
the assembly. How easy it is! However how does .Net Reactor really work?
When did he unpack the assembly to memory? When did he destroy the
Metadata header? We'll find out in next section.

Page 6 of 18

Reverse .NET Software 1X 1.0.0.0 Rongchaua

0 mscorlib Disassembler
« System
« System, Xml
« 2 System,Data
« 0 System.Weh 3
« 2 System.Drawing
2 System, Windows, Forms
0 Microsoft, VisualBasic
« SampleCrackme
= W% SampleCrackme. exe
[+3] References
i -
= {¥ SampleCrackme
= “f Farmil
) Base Types
[Derived Tyvpes

private void X4cUCeTSp{ohject, Eventargs)
x
L

base, Close();

IEEEEEEBEBE

g char)
-;@ Dispose(Boolean) @ Void
g - HcUCETSplObject, EventArgs) : Yoid

3% »e0MnuhLglOPLI3rS1{0bject, Eventhrgs) @ Yoid
3% sRRfcFISaR{Object, EventArgs) @ Yoid
.;j‘v H¥MS0§E0) vaoid

e« The assembly can be view with Reflector. No error with Metadata anymore.

Page 7 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

3 Unpack with new method

To find out more about how .Net Reactor works, we need to debug the .Net
Framework, set breakpoint at some important functions and see what
happened. To do that we need to make our Ollylce to be able to load with
symbol file of .Net Framework which provides much useful information about
the functions of a file? The symbol file may be achieved in many ways but I
know only one way through WinDbg. If you know more, then please share
your way with me.

So go to download WinDbg, install it. Open command console, browse to the
folder where we installed WinDbg. For example I install it under the folder
Programme\Debugging Tools for Windows (x86)

v CAWINDOWS\system32\cmd. exe

s Programme~Debugging Tools for Windows <xB6>>

Enter this command symchk /v

"C:\WINDOWS\Microsoft. NET\Framework\v2.0.50727\mscorwks.dll". 1t will
load the symbol file of mscorwks.dll from Microsoft server. The link to your
mscorwks.dll at local computer may vary with mine. So please be sure that
you provide the correct link to symchk. If not, symchk can not load the
symbol file to our local computer. After execution of symchk, it will give the
result back. In my result, symchk did his job successfully. No failed file and
one passed/ignored file because I downloaded the symbol for mscorwks
before. Symchk just check to find out if there are any updates for this file, he
found no update so he just passed.

Mscorwks.dll and Mscorijit.dll are two significant DLLs of .net framework. When
a assembly is loaded, mscorwks.dll will validate its PE Header, IL format,
verify strong name,... So we will load its symbol to provide more info to
OllyIce so that we can make our debug better.

Page 8 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

cv CAWINDOWS\system32emd. exe

C:“Programme“Debugging Tools for Windows (xB6>>suymchk v "C:AUWINDOWS“Microsoft.MN
ET“Framework-uvZ _ 8.58727"nscoruks . d11"
[S¥YMCHK] Searching for symbols to C:SUWINDOWSE“Microsoft.MET“Framework-uvZ_ @._.5872°
mzcorwuks.dl]l in path c:sWINDOWS-~SYMBOLS
DBGHELP: Svymbol Search Path: c:sWINDOWS-~SYMBOLS
[SYMCHK] Using search path "c:sWINDOWS-SYMBOLS'
DEGHELFP: Ho header for C:SUWINDOWS“Microsoft. MET“Framework-uvZ @B.508727"nzcoruwks._dl
1. Searching for image on disk
DEGHELP: C:sWINDOWS“Microsoft. MET“Framework-ww? B_.5872"nscoruks.dll — 0K
DBGHELF: mscorwks — public symbols

c I SHINDOWS~SYMBOLS “mzcorwks . pdbh~?FA?D4C5454E4346B1 1 ED?E1C22BDF46 2 mscor
wks . pdh

[S¥YMCHKE]1 MODULEG4 Info

[SYMCHK] Struct size: 1672 hytes

[SYMCHE] Baze: Bx79E7G0808

[SYMCHK] Image size: 5648172 hytes

[SYMCHK] Date: @wx433ieYec

[SYMCHK] Checksum: BxBA55d616

[SYMCHK]1 HumSuyms: @

[S¥MCHK]1 SymType: SymPDB

[S¥YMCHKE] ModMame: mzcorwks

[SYMCHK] ImageMame: GC:“WINDOWS“Microsoft.MET“Framewvork-wa.A.58727"-mscoruks.dll
[SYMCHK] LoadedImage: C:sWINDOUS“Microsoft. HNET“Framework-w2 B.58727mscoruks.dll

[S¥YMCHK]1 PDE: " :“~WINDOWSSSYMBOLS“mzcoruwks . pdb~?FA?D4C5454E4346B11ED?81C22BDF462
~mEcoruwks .. pdh''

[S¥YMCHK]1 CU: RSDS

[S¥YMCHK1 CU DUWORD: BAx53445352

[SYMCHK]1 CU Data: f:shinaries.xBbretsbin~i3d86~bbhtsoptmscoruks.pdh
[S¥MCHK]1 PDB Sig: @

[S¥YMCHK]1 PDB? Sig: {7FA?D4C5-454E-4346-B11E-D?81C22BDF462>

[S¥MCHK] Age: 2

[S¥YMCHK]1 PDB Matched: TRUE

[S¥MCHK]1 DBG Matched: TRUE

[E¥YMCHK] Line nubmersz: FALSE

[S¥MCHK]1 Global symz: FALSE

[SYMCHK] Type Info:

[S¥YHMCHK]

Symho1ChecklUersion BxBA00ARA2

Rezult BxB8638081

Bx4333eYec

AxAA5% 610868

Bx8055d616

c S WINDOWS S SYHBOLS “mecoruks . pdh~?FA?D4C5454E4346B11 ED781C22B
DF462~mzcoruks . pdb

PdhS ignature {7FA?D4AC5-454E-4346—-B11E-D781C22BDF46>

PdhDhifge BxABBBAAA2

[SYMCHE] [8xA0008000 — BxA08300081 1 Checked "C:~WINDOWS“Microsoft.MET“Framework
N2 85872 " nscoruks .d11"

SYMCHE: FAILED files = 8
SYMCHK: PASSED + IGHORED files =1

C s ProgrammesDebuggi Tools for Windows Cx862>

We have now the symbol file of mscowks; in next step we must configure our
Olly so that he can work with this symbol file. A command plugin for OllyDbg
of anonymouse can do this job perfectly.

Before using this plugin we need to configure it. Let’s add an environment
variable _NT_SYMBOL_PATH with the value C:\Windows\Symbols. The value
of this environment variable is the path to where symchk saved the symbol
file at local computer. This value stands in the result of symchk command

Page 9 of 18

Reverse .NET Software X 1.0.0.0

Rongchaua

after execution too. For example, we can find it in the figure above at some
first rows.

Umgebungsvariablen

Benutzervariablen Fir Administrataor

‘tariable Werk

TEMP C:\Dokumente und EinstelungeniAdrmini. ..

TMP C:Dakurmente und EinstelungenAdmini. ..

Meu] [Bearbeiten] [Lischen

Syskemyariablen

Yariable Werk i
_MT_SYMEOL_PATH) —
ComSpe: CW IRDOW St system 32 crmd, exe
FP_MO_HOST CHECK MO

MUMEER. OF PROCESSORS 1 b’
< [>

Meu] [Bearbeiten] [Lischen]

[(4 l [Abbrechen]

With this help of this plugin, OllyIce can now work with the symbol file. Open
OllyIce, go to Debugging Options, be sure that “"Make first pause at: System

breakpoint” and “"Break on new module (DLL)” and all exceptions must be
passed

{5 Debugging options

Commands] Dizagzm] CPL] Hegisters] Stack,] Analyziz 1] .-’-'-.nalysisE] .-’-'-.nalysisS]
Secunty] Debug Ewvents l Exceptions] Trace] SF] Stringsl .ﬁ.ddresses]

take firzt pause at:
{* Systemn breakpoint
" Entry point of main module

" wlinkd ain [if location is knowe)

[v Break on new module [DLL)
[Break on madule [DLL] unloading

~ n 1

Page 10 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

Commands] Digasm] CPU] Hegisters] Stack,] Analyziz 1] .&nalysisE] .-i‘-.nal_l,lsiSSI
SecLrity] Debug] Event: Exceptions l Trace] SF=] Strings] .-’-‘-.ddresses]

Iv Ignore memory access violations in KERMEL3Z2

lgnore [pass to program) following exceptions:
v INT3 breaks
v Single-step break
v Memaom access violation
Iv Integer divizion by 0
v Irvalid or privileged instruction
[v &l FPU exceptions

I+ |gnore alzo following custom exceptions o ranges:

00000000 .. FFFFFFFF . |

Add range |

- Delete zelection |

Load the SampleCrackme into OllyIce, it will land at this command

Paused | CRASE)0 (og]) 52)15)]) 0]) 9))) R

Addre=ss |Hex dump Di=zas=sembly
7C91120F 3

7C911210 8BFF

JCc911212 cC

JC911213 3

JC011214 8BFF

JCD112146 884424 04

JCe1121a cC

FC011218 c2 0400

FCO1121F 64:a1 18000000 dword ptr f£=:[18]
FC011224 c3

FC011225 57

FC011226 8B7C24 OC

Open Command line plugin, enter this command loadpdb
C:\WINDOWS\Microsoft. NET\Framework\v2.0.50727\mscorwks.dll. This
command will load the symbol file into OllyIce and we’ll have more
information when debugging mscorwks.dlI.

2 command line

|1uadpdh C: \WINDOWS \Microsoft . HET\Frames

loadpdb C:\WINDOWS\Microsoft.HET\Fra
bp WriteProcessMemory

Page 11 of 18

Reverse .NET Software 1 X 1.0.0.0

Rongchaua

Press F9 so that Ollylce starts to run SampleCrackme. Everytime when a
module loads, OllyIce will stop. Just press F9 until mscorwks is loaded.

(xpsp =p3 gdr.081
(xpsp.080413-210
(xpsp.080413-23113
RTHM. 050727-4200)
RTHM. 050727-4200)

{xpsp.080413-2111
(xpsp.080413-2111
(xpsp.080413-2105

C \WIHNDOWS \system32\SHLWAPT . d11

s \WINDOWS \system32\Secur32.d11

' \WINDOWS \system32\mscoree. d1l

't WWIHNDOWS WHMicrosoft . HET\Frameworkw2. 0. 50727 \mscor
-:\WIHDOWS\systemﬂE\kernelBE.dll
-:\WIHDOWE\systemBZHthll.dll
-:\WIHDOWS\systemBZHuserBE.dll

Right click on the record of mscorwks, click View names.

III MNames in msconrwks

Radress|sectionltype fwame |

TOr2r47y .
TOF2F 58]
TOF32CB ¢
TOF30153
TOF5007¢
TOF334a4

TAZCADD(
TaZ2C0247
TOEF 64871
Ta2C08B8]
TAZ2CD7T3
TAZCDABE
TAZ26ADC
TAZ26ADF]
TOEBOFBI
TOEANC T
TA10DE 81
TOEDLHBD!

text

. text
. text
. text
. text
. text
. text
. text
. text
. text
. text
. text
. text
. text
. text
. text
. text
. text
. text
. text

LJ_h:r: ary

Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library
Library

Library

AssemblyHatiwve: :
AssemblyHative:
AzssembhlyHative:
AssemblyHative:
AzsemblyHative:
AzsemblyHative:
AzsemblyHative:
AzsemblyNative:
AzzembhlyHative:
AssembhlyHative:
AssemblyHative:
AzssembhlyHative:
AssemblyHative:
AssemblyHative:
:Copy
Az=semblyFefRec:
AzzemblySecurityDescriptor:
AzzemblySecurityDescriptor:
AssemblySecurityDescriptor:

AzsemblyFec:

AssemblySecurityDescriptor:

GetType

GetTypelnner
GetVersion
:GlobalaAssemblyCac]
: I=sDynamic

:Load

:LoadFile
:LoadImage
:LoadHModul eImage
:Preparefavingtiani
:Peflection
:SaveHMani festToDis]
:SavePermissionPeq
:5etHashValue

:Copy

: AddT o]
: Asseml
rCanbs!
:CanSk;

It is very beautiful. We have the names of all functions. They are very
meaningful. It'll surely help us a lot in reversing .Net application. After going
through this list, let’s set breakpoint on the function
AssemblyNative:LoadImage. It looks so interesting and may bring us much

useful information.

Press F9 so that OllyIce continues his job until we break at
AssemblyNative:LoadImage, right click on ECX register, follow in dump and

we see

Page 12 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

l..LI!This progr
am cannot he run

in DOS mode. ...

» A great jump, ECX pointed to an unknown struct. This struct contains an
unknown pointer (DWORD), the size of assembly and the complete assembly.
We can now easily dump assembly from memory with the exact size (ho
redundant bytes anymore) and the dumped file can be an original one with
the probability up to 90%. However it is not easy to find out when we can get
the assembly that we need. As you know, when an assembly is loaded, the
.Net framework will load it references so when this breakpoint stops Ollylce, it
does not mean that ECX points to the assembly which we want but it can be
its references, the loader or something like that. So we must to be sure that
ECX points to our wanted assembly.

e In this example, I packed my Sample Crackme with a demo version of .Net
Reactor. Hence a nag reminding me to buy a full version comes always up
before my Sample Crackme runs. So I take this nag as a signal telling me that
the breakpoint which breaks after this nag will point to my assembly. Or like
AS Protect, you can count the number of times that this breakpoint breaks
and the last break before the assembly completely runs will lead us to the
memory section of the assembly.

EZIRIZ MET Reactor !

Thiz product iz protected by an unregistered wverzion of
"EZIRIZ MET Reactar'!l

« After this nag is loaded, OllyIce will break at the breakpoint
AssemblyNative:LoadImage again. We have now ECX point to our assembly
with size of 0xFO0O as shown in figure below.

Page 13 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

00 FO 00 00| 4D 03 00 00 00
Q0 00 00 00

o oy

OxF000 is file

size assembly

l..Li!This progr
75 BE |am cannot be run
0D OA| in DOS mode. ...
03 00

Let’s dump this memory to file; I use LordPE to do that. At my local computer
the address is 0x14B2F8C and size is of course 0xF00O.

. bl
TA2CBDBA
t2::IsLoadFromBlocked Fath

[T c:\windowshspstem 32 alg. exe
d eingtelungent.adr
d einztelungent.adr

TAZCHBORD
[Dump Partial]

Dump [nformation K 4 einstel \ad
hd einstelungentadr
Address: T14B2FEC
C I
Size: Fooo ﬁ

- hd einstelungentadr

"_| c:windowshspstem 32 ntdll i

"_| c:hwwindowshspstern32ikernel32.dll
...... "_I c:hwindowshapstem 32 user 32 di

................ %] cwindowstaystem 32 gdia2. dil

................ U LAy 530 UUULILILIL

.......... oL ... 0012D35(0000000
0012Dp35: 0133336

Let’s view the dumped file in Reflector. Oh, we have a correct header.
Everything looks beautiful, no crashes, no need to fix any value in header file
but where is our IL code? Did .Net Reactor hide it anywhere? Is there any IL
Code in file or are they all changed to native code?

Page 14 of 18

Reverse .NET Software 1X 1.0.0.0

Rongchaua

S G A

= mscorlib
= Svstem

= Syskem, $ml

i Svystem,Data

2 Syskem,\Web

i Svystem, Drawing

=3 Fyskem, Windows,Forms

2 Microsoft, YisualBasic

3 sampleCrackme

= W% SampleCrackme exe
+ [+ References

A} -

= {} sampleCrackme
= “I% Forml

0148 3FC4
0148 3FD4
0148 3FE 4
0148 3FF4
01484004
01484014
01454024
014840324
01484044
01484054
01484064
01484074
01484084
01484094

+ ¥} Base Tvpes
+ [Derived Tvpes
i .ckor()
#y DisposeiBoolean) : Yoid

g - HcCeTSp Object, EventArgs) : Yoid
g% #elMnuhlglOPDI3r451(0bject, Eventhrgs) @ Yoid
&% “KRFcFISaR{Object, Eventirgs) @ Yoid

&% ¥Ms0is) : void

G wiC3ahs(Object, Eventhrgs) @ Yoid

Net PE File Format.

BD AC == wrong
method Header

.method private hidebysig instanc
i

Return to OllyIce windows, browse to the section of IL Code which starts
normally at offset 0x1050. We see that the Method Header of each method is
destroyed through replacing 4 bytes at the beginning with 0xBDAC0000. You
can read more about Method Header (Fat Header/Tiny Header) in the
documentation of Microsoft about .

.Net Reactor must anywhere restore these bytes back so that CLR can compile
the code. A breakpoint at WriteProcessMemory should be a good candidate to
find out where .Net Reactor tries to write the original value back.

Page 15 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

2 Command line

|hp WritePrncessHemnrﬂ

loadpdbh C:\WIHDOWS \Microsoft. HET\Fran

bp WriteProcessHMemory

e Press F9 so that OllyIce runs forward and we will land here.

Addre=s | Value Comment

. 01142BA2 CATL to WriteProcessMemory from
0012p30¢f Q0000I1ED hProcess = 000001EQD
0012p30¢ 012F1010 Address = 12F1010

0012p31(¢ 014C5188 Buffer = 014C5188

0012031 Q0000004 BvtesToWrite = 4
0012p31¢f 0012D374 pBytestritten = 00120374
0012Dp31¢ T11ZBAES

e Scroll up to 0x12F0000 we see a magic word MZ, scroll down to take a look at
whole memory section we see that it may be contain the assembly which we
want.

012F0000
012F0010
012F 0020
012F0030
012Fr0040

012F 0050 : : is program canno
012F0060 . . 5. t be run in DOS
012F0070

012F0080

012F0020

012F00A0

 The offset 0x1000 starts usually the MetaData Header of .Net Directory. With
the WriteProcessMemory function, .Net Reactor try to write garbage value into
this MetaData Header and restore the Method Header of each method back.
To stop him to do what he wants, everytime when he tries to modify value
from offset 0x1000 to 0x1050 (a usual range for MetaData Header of .net
application) , we modify the BytesToWrite to 0 so that he can not write any
value to destroy the header and with that way we only allow him to restore
the method header back.

+ .Net Reactor will modify the MetaData Header first and he’ll restore the
method header back and at last he will modify the MetaData Header again. So
to get our original assembly back, at the first round when he modifies our

Page 16 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

MetaData Header, we modify the BytesToWrite to 0. In the second round
when he starts to restore our method header back, we just press F9 to go
through. In the last round, when he wants to modify our metadata header
again, we have already let him fix all Method Header. We just dump the
original assembly back and we’ll get full working file which can be viewed in
Reflector.

4 Conclusion

We have tried to unpack .Net Reactor with old method and new method. You
can realize that the new one is just for studying how .Net Reactor works
actually. It can not be applied in reality because for example unpacking a file
with more than thousands of method, we can not sit and press F9 until the
third round (WriteProcessMemory tries to write at offset 0x1000 to 0x1050
again).

However the new method provides us a deeper look about .Net Framework
and the way .Net Reactor works. There are a lot of interesting functions of
mscorwks.dll which we can set a breakpoint and see what happens. I am
looking forward to see other articles showing the art of playing with
mscorwks.dll and mscorjit.dll file.

5 Links in article

REA http://reaonline.net/index.php

.Net Reactor http://www.eziriz.com/

.Net Reflector http://www.red-gate.com/products/reflector/

.Net Reactor Unpacker http://rongchaua.net/tools-mainmenu-36/80-reacfixer
.Net PE Library http://rongchaua.net/tools-mainmenu-36/117-net-pe-file-
format-library

.Net Id http://rongchaua.net/tools-mainmenu-36/131-net-id

Command Line Plugin of anynomouse
http://www.openrce.org/downloads/details/206/Modified CmdLine Plug-in
.Net PE File Format
http://download.microsoft.com/download/7/3/3/733AD403-90B2-4064-A81E-
01035A7FE13C/MS%?20Partition%20II.pdf

6 References

http://portal.acm.org/citation.cfm?id=579355

7 The end

I wrote this documentation just for storing my thinking flow during reverse
process. It is just a notice and I do not intend to write it as an article.
Therefore in some section I just discuss main idea and of course it is not
completely explained. I hope you can emphatize with me.

I do write something wrong please contact to correct me.

This artice was written as a reference for member in REA so I would like to
present REA members with this one.

Page 17 of 18

Reverse .NET Software 1 X 1.0.0.0 Rongchaua

This artice is aimed for education. I am not responsible for the reader’s
activity when the reader use it for their aims.

Rongchaua
My Email : rongchaua@rongchaua.net

My Website: www.rongchaua.net
If I make a mistake in this article, please correct me.

12.04.2009-13.04.2009

Page 18 of 18

